Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho parabol \(\left( P \right):y = {x^2} + 2x - 5\) và đường thẳng \(d:y = 2mx + 2 - 3m\). Tìm tất cả các

Câu hỏi số 325330:
Vận dụng

Cho parabol \(\left( P \right):y = {x^2} + 2x - 5\) và đường thẳng \(d:y = 2mx + 2 - 3m\). Tìm tất cả các giá trị \(m\) để \(\left( P \right)\) cắt d tại hai điểm phân biệt nằm phía bên phải trục tung.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:325330
Phương pháp giải

Lập phương trình hoành độ giao điểm, biện luận nghiệm.

Phương trình bậc 2 có 2 nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\S > 0\\P > 0\end{array} \right.\)

Giải chi tiết

Phương trình hoành độ giao điểm của (P)  và d là:

\({x^2} + 2x - 5 = 2mx + 2 - 3m \Leftrightarrow {x^2} + 2\left( {1 - m} \right)x + 3m - 7 = 0\)      (1)

 Để \(\left( P \right)\) cắt d tại hai điểm phân biệt nằm phía bên phải trục tung \( \Leftrightarrow \) (1) có 2 nghiệm dương phân biệt

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {\left( {1 - m} \right)^2} - \left( {3m - 7} \right) > 0\\ - 2\left( {1 - m} \right) > 0\\3m - 7 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 8 > 0\\1 - m < 0\\3m > 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - \frac{5}{2}} \right)^2} + \frac{7}{4} > 0\\m > 1\\m > \frac{7}{3}\end{array} \right. \Leftrightarrow m > \frac{7}{3}\)

Chọn C.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com