Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Bất phương trình \(({x^2} - x - 6)\sqrt {{x^2} - x - 2}  \ge 0\) có tập nghiệm là

Câu hỏi số 326949:
Vận dụng

Bất phương trình \(({x^2} - x - 6)\sqrt {{x^2} - x - 2}  \ge 0\) có tập nghiệm là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:326949
Phương pháp giải

Lập bảng xét dấu giải BPT.

Giải chi tiết

ĐKXĐ: \({x^2} - x - 2 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 1\end{array} \right.\)

\(\left( {{x^2} - x - 6} \right)\sqrt {{x^2} - x - 2}  \ge 0 \Leftrightarrow \left( {x + 2} \right)\left( {x - 3} \right)\sqrt {\left( {x - 2} \right)\left( {x + 1} \right)}  \ge 0\)

Đặt \(f\left( x \right) = \left( {{x^2} - x - 6} \right)\sqrt {{x^2} - x - 2} \) . Ta có bảng:

Vậy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right) \cup \left\{ { - 1;2} \right\}\)

Chọn A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com