Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx -

Câu hỏi số 329940:
Vận dụng

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:329940
Phương pháp giải

+) Để hàm số đồng biến trên \(\left( {0; + \infty } \right) \Rightarrow y' \ge 0\,\,\forall x \in \left( {0; + \infty } \right)\).

+) Cô lập m, đưa BPT về dạng \(m \ge f\left( x \right)\,\,\forall x \in \left( {0; + \infty } \right) \Leftrightarrow m \ge \mathop {\min }\limits_{\left[ {0; + \infty } \right)} f\left( x \right)\).

+) Sử dụng chức năng MODE 7, xác định GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {0; + \infty } \right)\) và kết luận.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\). Ta có \(y' = {x^3} + m + \dfrac{3}{{2{x^2}}} = \dfrac{{2{x^5} + 2m{x^2} + m}}{{2{x^2}}}\).

Để hàm số đồng biến trên \(\left( {0; + \infty } \right) \Rightarrow y' \ge 0\,\,\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 2{x^5} + 2m{x^2} + m \ge 0\,\,\forall x \in \left( {0; + \infty } \right)\).

\(\begin{array}{l} \Leftrightarrow 2{x^5} + m\left( {2{x^2} + 1} \right) \ge 0\,\,\forall x \in \left( {0; + \infty } \right) \Leftrightarrow m \ge \dfrac{{ - 2{x^5}}}{{2{x^2} + 1}} = f\left( x \right)\,\,\forall x \in \left( {0; + \infty } \right)\\ \Leftrightarrow m \ge \mathop {\min }\limits_{\left[ {0; + \infty } \right)} f\left( x \right)\end{array}\)

Xét hàm số \(f\left( x \right) = \dfrac{{ - 2{x^5}}}{{2{x^2} + 1}}\) trên \(\left( {0; + \infty } \right)\), sử dụng MTCT ta có \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} f\left( x \right) = f\left( 0 \right) = 0 \Rightarrow m \ge 0\).

Vậy không có giá trị nguyên âm của tham số \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com