Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({2^{3x}} < {\left( {\dfrac{1}{2}} \right)^{ - 2x - 6}}\) là:

Câu hỏi số 329948:
Thông hiểu

Tập nghiệm của bất phương trình \({2^{3x}} < {\left( {\dfrac{1}{2}} \right)^{ - 2x - 6}}\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:329948
Phương pháp giải

Giải bất phương trình mũ cơ bản: \({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\).

Giải chi tiết

\(\begin{array}{l}\,\,\,\,\,\,{2^{3x}} < {\left( {\dfrac{1}{2}} \right)^{ - 2x - 6}} \Leftrightarrow {2^{3x}} < {\left( {{2^ - }} \right)^{ - 2x - 6}}\\ \Leftrightarrow {2^{3x}} < {2^{2x + 6}} \Leftrightarrow 3x < 2x + 6 \Leftrightarrow x < 6\end{array}\)

Vậy tập nghiệm của bất phương trình \({2^{3x}} < {\left( {\dfrac{1}{2}} \right)^{ - 2x - 4}}\) là: \(\left( { - \infty ;6} \right)\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com