Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):2x - y + 3z + 4 = 0\) và điểm \(A\left( {2; -

Câu hỏi số 331313:
Vận dụng

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):2x - y + 3z + 4 = 0\) và điểm \(A\left( {2; - 1;2} \right)\). Mặt phẳng qua A song song với trục Oy và vuông góc với \(\left( \alpha  \right)\) có phương trình là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:331313
Phương pháp giải

Phương trình mặt phẳng đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {a;b;c} \right) \ne \overrightarrow 0 \) là:

\(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\).

Giải chi tiết

Mặt phẳng \(\left( \alpha  \right):2x - y + 3z + 4 = 0\) có 1 VTPT là: \(\overrightarrow n \left( {2; - 1;3} \right)\)

Gọi (P) là mặt phẳng cần tìm. Do (P) song song Oy và vuông góc với \(\left( \alpha  \right)\) nên (P) có 1 VTPT là:

\(\overrightarrow {{n_1}}  = \left[ {\overrightarrow n ;\overrightarrow j \left( {0;1;0} \right)} \right] = \left( { - 3;0;2} \right)\)

Mặt phẳng (P) đi qua \(A\left( {2; - 1;2} \right)\), có 1 VTPT \(\overrightarrow {{n_1}}  = \left( { - 3;0;2} \right)\) có phương trình là:

\( - 3\left( {x - 2} \right) + 0 + 2\left( {z - 2} \right) = 0 \Leftrightarrow \)\(3x - 2z - 2 = 0\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com