Cho hình chóp\(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh\(a,\) \(SA \bot \left( {ABCD} \right)\) và góc
Cho hình chóp\(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh\(a,\) \(SA \bot \left( {ABCD} \right)\) và góc giữa \(SD\)với mặt đáy bằng \({45^{\rm{o}}}.\) Gọi \(M,N,P\) lần lượt là các điểm trên cạnh \(SA,SC,SD\) sao cho \(SM = MA,\)\(SN = 2NC\) và \(SP = 2PD.\)
a. Chứng minh rằng \(\left( {SAC} \right) \bot BD;\)\(\left( {SAB} \right) \bot \left( {SBC} \right).\)
b. Chứng minh rằng \(AP \bot NP.\)
c. Tính côsin của góc giữa 2 mặt phẳng \(\left( {MCD} \right)\) và \(\left( {BNP} \right).\)
Quảng cáo
a) \(\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \cap b \subset \left( P \right)\end{array} \right. \Rightarrow d \bot \left( P \right)\).
\(\left\{ \begin{array}{l}d \bot \left( P \right)\\d \subset \left( Q \right)\end{array} \right. \Rightarrow \left( P \right) \bot \left( Q \right)\).
b) Chứng minh \(NP\) vuông góc với mặt phẳng chứa \(AP\).
c) Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến.
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













