Cho hàm số \(y = f\left( x \right) = \dfrac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}\).
Cho hàm số \(y = f\left( x \right) = \dfrac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}\). Có bao nhiêu giá trị của \(m\) để đồ thị hàm số có duy nhất một tiệm cận đứng?
Đáp án đúng là: A
Quảng cáo
Đồ thị hàm số \(y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) với \(f\left( x \right);g\left( x \right)\) là các đa thức nhận \(x = {x_0}\) là tiệm cận đứng khi \({x_0}\) là nghiệm của mẫu \(g\left( x \right)\) nhưng không là nghiệm của tử \(f\left( x \right).\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












