Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết \(\int\limits_0^1 {\sqrt {{x^2} + 4} .xdx}  = \dfrac{1}{a}\left( {\sqrt {{b^3}}  - c} \right)\). Tính \(Q =

Câu hỏi số 333756:
Vận dụng

Biết \(\int\limits_0^1 {\sqrt {{x^2} + 4} .xdx}  = \dfrac{1}{a}\left( {\sqrt {{b^3}}  - c} \right)\). Tính \(Q = abc\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:333756
Phương pháp giải

Đặt \(t = \sqrt {{x^2} + 4} \), đổi cận và tính tích phân.

Giải chi tiết

Đặt \(t = \sqrt {{x^2} + 4} \)\( \Rightarrow {x^2} + 4 = {t^2} \Rightarrow xdx = tdt\). Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 2\\x = 1 \Rightarrow t = \sqrt 5 \end{array} \right.\).

Khi đó \(\int\limits_0^1 {\sqrt {{x^2} + 4} .xdx}  = \int\limits_2^{\sqrt 5 } {{t^2}dt}  = \left. {\dfrac{{{t^3}}}{3}} \right|_2^{\sqrt 5 } = \dfrac{1}{3}\left( {\sqrt {{5^3}}  - 8} \right)\)

Do đó \(a = 3,b = 5,c = 8 \Rightarrow abc = 120\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com