Cho tam giác nhọn \(ABC\) có ba đường cao \(AD,\,\,BE\) và \(CF\) cắt nhau tại \(H.\) a) Chứng minh:
Cho tam giác nhọn \(ABC\) có ba đường cao \(AD,\,\,BE\) và \(CF\) cắt nhau tại \(H.\)
a) Chứng minh: \(\Delta ABE \sim \Delta ACF,\) từ đó suy ra \(AB.AF = AC.AE.\)
b) Chứng minh: \(DB.DC = DA.DH.\)
c) Gọi \(I\) là trung điểm của \(BC.\) Đường thẳng vuông góc với \(IH\) tại \(H\) cắt \(AB\) và \(AC\) lần lượt tại \(M\) và \(N.\) Chứng minh \(\Delta AHN \sim \Delta BIH\) và \(H\) là trung điểm của \(MN.\)
Quảng cáo
a) Chứng minh hai tam giác đồng dạng theo TH góc – góc, từ đó suy ra các cặp cạnh tương ứng tỉ lệ.
b) Chứng minh \(\Delta DHB \sim \Delta DAC\,\,\left( {g - g} \right)\) sau đó suy ra các cặp cạnh tương ứng tỉ lệ và suy ra đẳng thức cần chứng minh.
c) Chứng minh \(\Delta AHN \sim \Delta BIH\,\,\left( {g - g} \right)\) và \(\Delta AHM \sim \Delta CIH\,\,\,\left( {g - g} \right)\) để từ đó suy ra \(H\) là trung điểm của \(MN.\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










