Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 2;2} \right]\) và

Câu hỏi số 334395:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 2;2} \right]\) và \(\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \). Khi đó, tích phân \(\int\limits_0^2 {\left( {1 + f\left( x \right)} \right)dx} \) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:334395
Phương pháp giải

Sử dụng tính chất của hàm số chẵn.

Giải chi tiết

\(\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \,\,(1) \Rightarrow \int\limits_2^{ - 2} {\frac{{f\left( { - x} \right)}}{{{{2018}^{ - x}} + 1}}\left( { - dx} \right) = 2020 \Leftrightarrow } \int\limits_{ - 2}^2 {\frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \,\,\,(2)\)

(do \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 2;2} \right]\))

Cộng (1) với (2):

\(\begin{array}{l}\,\,\,\,\,\,\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx + } \,\int\limits_{ - 2}^2 {\frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}dx = 4040} \\ \Leftrightarrow \int\limits_{ - 2}^2 {\left( {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}} + \frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}} \right)dx}  = 4040 \Leftrightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx}  = 4040\end{array}\)

Lại do \(y = f\left( x \right)\) là hàm chẵn nên \(\int\limits_{ - 2}^2 {f\left( x \right)dx}  = 2.\int\limits_0^2 {f\left( x \right)dx}  \Rightarrow \int\limits_0^2 {f\left( x \right)dx}  = 2020\)

Ta có: \(\int\limits_0^2 {\left( {1 + f\left( x \right)} \right)dx}  = \int\limits_0^2 {dx}  + \int\limits_0^2 {f\left( x \right)dx}  = 2 + 2020 = 2022\).

Chọn: B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com