Cho số tự nhiên \(n\) thỏa mãn \(A_n^2 + 2C_n^n = 22\). Hệ số của số hạng chứa \({x^3}\) trong khai
Cho số tự nhiên \(n\) thỏa mãn \(A_n^2 + 2C_n^n = 22\). Hệ số của số hạng chứa \({x^3}\) trong khai triển của biểu thức \({\left( {3x - 4} \right)^n}\) bằng:
Đáp án đúng là: C
Quảng cáo
+) Giải phương trình \(A_n^2 + 2C_n^n = 22\) tìm \(n\), sử dụng các công thức \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}},\,\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\).
+) Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












