Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết \(\int\limits_1^3 {\dfrac{{\left( {3x + 1} \right)dx}}{{3{x^2} + x\ln x}}}  = \ln \left( {a + \dfrac{{\ln

Câu hỏi số 335493:
Vận dụng

Biết \(\int\limits_1^3 {\dfrac{{\left( {3x + 1} \right)dx}}{{3{x^2} + x\ln x}}}  = \ln \left( {a + \dfrac{{\ln b}}{c}} \right)\)  với \(a,b,c\) là các số nguyên dương và \(c \le 4\). Tổng \(a + b + c\) bằng :

Đáp án đúng là: D

Quảng cáo

Câu hỏi:335493
Phương pháp giải

Đặt \(t = \ln x \Rightarrow x = {e^t} \Rightarrow dx = {e^t}dt\).

Giải chi tiết

Đặt \(t = \ln x \Rightarrow x = {e^t} \Rightarrow dx = {e^t}dt\). Đổi cận \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 0\\x = 3 \Rightarrow t = \ln 3\end{array} \right.\).

\(\begin{array}{l} \Rightarrow \int\limits_1^3 {\dfrac{{\left( {3x + 1} \right)dx}}{{3{x^2} + x\ln x}}}  = \int\limits_0^{\ln 3} {\dfrac{{\left( {3{e^t} + 1} \right){e^t}dt}}{{3{e^{2t}} + {e^t}t}}}  = \int\limits_0^{\ln 3} {\dfrac{{3{e^t} + 1dt}}{{3{e^t} + t}}}  = \int\limits_0^{\ln 3} {\dfrac{{d\left( {3{e^t} + t} \right)}}{{3{e^t} + t}}} \\ = \left. {\ln \left| {3{e^t} + t} \right|} \right|_0^{\ln 3} = \ln \left| {9 + \ln 3} \right| - \ln 3 = \ln \dfrac{{9 + \ln 3}}{3} = \ln \left( {3 + \dfrac{{\ln 3}}{3}} \right) \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 3\\c = 3\,\,\left( {tm} \right)\end{array} \right. \Rightarrow a + b + c = 9\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com