Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho \(I = \int\limits_0^{ - 1} {x{{(x - 1)}^2}dx} \) khi đặt \(t =  - x\) ta có :

Câu hỏi số 335719:
Vận dụng

Cho \(I = \int\limits_0^{ - 1} {x{{(x - 1)}^2}dx} \) khi đặt \(t =  - x\) ta có :

Đáp án đúng là: D

Quảng cáo

Câu hỏi:335719
Phương pháp giải

Sử dụng phương pháp đổi biến số

Giải chi tiết

Đặt \(t =  - x \Rightarrow dt =  - dx \Leftrightarrow dx =  - dt\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x =  - 1 \Rightarrow t = 1\end{array} \right.\)

Khi đó \(I = \int\limits_0^{ - 1} {x{{(x - 1)}^2}dx}  = \int\limits_0^1 {\left( { - t} \right){{\left( { - t - 1} \right)}^2}\left( { - dt} \right)}  = \int\limits_0^1 {t{{\left( {t + 1} \right)}^2}dt} \)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com