Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian \(Oxyz,\) cho hai đường thẳng \({\Delta _1}:\,\,\dfrac{{x - 1}}{{ - 2}} = \dfrac{{y + 2}}{1} =

Câu hỏi số 335790:
Thông hiểu

Trong không gian \(Oxyz,\) cho hai đường thẳng \({\Delta _1}:\,\,\dfrac{{x - 1}}{{ - 2}} = \dfrac{{y + 2}}{1} = \dfrac{{z - 3}}{2}\) và \({\Delta _2}:\,\,\dfrac{{x + 3}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{{ - 4}}.\) Góc giữa hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:335790
Phương pháp giải

Cho hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) có các vecto chỉ phương lần lượt là: \(\overrightarrow {{u_1}}  = \left( {{a_1};\,\,{b_1};\,\,{c_1}} \right)\) và \(\overrightarrow {{u_2}}  = \left( {{a_2};\,\,{b_2};\,\,{c_2}} \right)\) thì góc giữa hai đường thẳng  \({\Delta _1},\,\,{\Delta _2}\) được tính bằng công thức: \(\cos \alpha  = \dfrac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \dfrac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\)

Giải chi tiết

Ta có: \({\Delta _1}\) có VTCP là: \(\overrightarrow {{u_1}}  = \left( { - 2;\,\,1;\,\,2} \right),\,\,\Delta \) có VTCP là: \(\overrightarrow {{u_2}}  = \left( {1;\,\,1; - 4} \right).\)

Gọi \(\alpha \) là góc giữa hai đường thẳng \(\left( {{\Delta _1};\,\,{\Delta _2}} \right)\) ta có:

\(\begin{array}{l}\cos \alpha  = \dfrac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \dfrac{{\left| { - 2.1 + 1.1 + 2.\left( { - 4} \right)} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + 1 + {2^2}} .\sqrt {1 + 1 + {{\left( { - 4} \right)}^2}} }} = \dfrac{9}{{3.3\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}.\\ \Rightarrow \alpha  = {45^0}.\end{array}\)

Chọn  B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com