Trong không gian \(Oxyz,\) cho đường thẳng \(d:\,\,\dfrac{{x - 2}}{{ - 1}} = \dfrac{{y - 1}}{2} = \dfrac{z}{2}\)
Trong không gian \(Oxyz,\) cho đường thẳng \(d:\,\,\dfrac{{x - 2}}{{ - 1}} = \dfrac{{y - 1}}{2} = \dfrac{z}{2}\) và mặt phẳng \(\left( P \right):\,\,x + 2y - z - 5 = 0.\) Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:
Đáp án đúng là: D
Quảng cáo
Ta có: \(d:\,\,\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c} \Rightarrow d:\,\,\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right. \Rightarrow M\left( {{x_0} + at;\,\,{y_0} + bt;\,\,{z_0} + ct} \right)\) là một điểm thuộc đường thẳng \(d.\)
\(M = d \cap \left( P \right) \Rightarrow \) tọa độ điểm \(M\) thỏa mãn phương trình mặt phẳng \(\left( P \right).\) Từ đó tìm được \(t \Rightarrow \) tọa độ điểm \(M.\)
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












