Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu số nguyên \(m\) để phương trình \(x + 3 = m{e^x}\) có 2 nghiệm phân biệt?

Câu hỏi số 335842:
Vận dụng

Có bao nhiêu số nguyên \(m\) để phương trình \(x + 3 = m{e^x}\) có 2 nghiệm phân biệt?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:335842
Phương pháp giải

+) Cô lập \(m\), đưa phương trình về dạng \(m = f\left( x \right)\).

+) Số nghiệm của phương trình \(m = f\left( x \right)\) là số giao điểm của đồ thị hàm số \(y = m\) và \(y = f\left( x \right)\).

+) Lập BBT hàm số \(y = f\left( x \right)\) và kết luận.

Giải chi tiết

\(x + 3 = m{e^x} \Leftrightarrow m = \dfrac{{x + 3}}{{{e^x}}} = f\left( x \right)\,\,\left( * \right)\,\,\left( {Do\,\,{e^x} > 0\,\,\forall x \in \mathbb{R}} \right)\).

Để phương trình \(x + 3 = m{e^x}\) có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm phân biệt.

Xét hàm số \(f\left( x \right) = \dfrac{{x + 3}}{{{e^x}}}\) ta có: \(f'\left( x \right) = \dfrac{{{e^x} - \left( {x + 3} \right){e^x}}}{{{e^{2x}}}} = \dfrac{{ - x - 2}}{{{e^x}}} = 0 \Leftrightarrow x =  - 2\).

BBT:

 

Số nghiệm của phương trình \(m = f\left( x \right)\) là số giao điểm của đồ thị hàm số \(y = m\) và \(y = f\left( x \right)\).

Dựa vào BBT ta có phương trình \(\left( * \right)\) có 2 nghiệm phân biệt \( \Rightarrow 0 < m < {e^2}\).

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3;4;5;6;7} \right\}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com