Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\,\,\left\{ \begin{array}{l}x =  - 1 - 2t\\y = t\\z =  - 1

Câu hỏi số 335841:
Vận dụng

Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\,\,\left\{ \begin{array}{l}x =  - 1 - 2t\\y = t\\z =  - 1 + 3t\end{array} \right.,\,\,d':\,\,\left\{ \begin{array}{l}x = 2 + t'\\y =  - 1 + 2t'\\z =  - 2t'\end{array} \right.\) và mặt phẳng \(\left( P \right):\,\,x + y + z + 2 = 0\). Đường thẳng vuông góc với mặt phẳng \(\left( P \right)\) và cắt hai đường thẳng \(d,\,\,d'\)  có phương trình là:

 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:335841
Phương pháp giải

+) Gọi \(\Delta \) là đường thẳng cần tìm.

+) Giả sử \(A = \Delta  \cap d \Rightarrow A\left( { - 1 - 2t;t; - 1 + 3t} \right)\); \(B = \Delta  \cap d' \Rightarrow B\left( {2 + t'; - 1 + 2t'; - 2t'} \right)\) \( \Rightarrow \overrightarrow {AB} \) là 1 VTCP của \(\Delta \)

+) \(\left( P \right)\) nhận \(\overrightarrow n \left( {1;1;1} \right)\) là 1 VTPT. Do \(\Delta  \bot \left( P \right) \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow n \) là 2 vectơ cùng phương. Tìm \(t,t'\).

+) Phương trình đường thẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) là có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\): \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\).

Giải chi tiết

Gọi \(\Delta \) là đường thẳng cần tìm.

Giả sử \(A = \Delta  \cap d \Rightarrow A\left( { - 1 - 2t;t; - 1 + 3t} \right)\).

          \(B = \Delta  \cap d' \Rightarrow B\left( {2 + t'; - 1 + 2t'; - 2t'} \right)\).

\( \Rightarrow \overrightarrow {AB}  = \left( {2t + t' + 3; - t + 2t' - 1; - 3t - 2t' + 1} \right)\) là 1 VTCP của \(\Delta \).

\(\left( P \right)\) nhận\(\overrightarrow n \left( {1;1;1} \right)\) là 1 VTPT.

Do \(\Delta  \bot \left( P \right) \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow n \) là 2 vectơ cùng phương.

\( \Rightarrow 2t + t' + 3 =  - t + 2t' - 1 =  - 3t - 2t' + 1 \Leftrightarrow \left\{ \begin{array}{l}3t - t' + 4 = 0\\2t + 4t' - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  - 1\\t' = 1\end{array} \right.\) 

\( \Rightarrow A\left( {1; - 1; - 4} \right),\,\,B\left( {3;1; - 2} \right) \Rightarrow \overrightarrow {AB}  = \left( {2;2;2} \right)//\left( {1;1;1} \right)\).

Vậy phương trình đường thẳng \(\Delta :\,\,\dfrac{{x - 3}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{1}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com