Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) (với \(m\) là tham số thực) có

Câu hỏi số 335846:
Vận dụng

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) (với \(m\) là tham số thực) có nhiều nhất bao nhiêu điểm cực trị?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:335846
Phương pháp giải

Số điểm cực trị của hàm số \(y = \left| {f\left( x \right)} \right|\) = số cực trị của hàm số \(y = f\left( x \right)\) + số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với trục hoành. (Hàm đa thức hoặc hàm số xác định \(\forall x \in \mathbb{R}\))

Giải chi tiết

Hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) có TXĐ \(D = \mathbb{R}\).

Xét hàm số \(g\left( x \right) = \dfrac{x}{{{x^2} + 1}} - m\) ta có:

\(g'\left( x \right) = \dfrac{{{x^2} + 1 - x.2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0 \Leftrightarrow x =  \pm 1\).

\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) có 2 điểm cực trị.

Xét phương trình hoành độ giao điểm \(\dfrac{x}{{{x^2} + 1}} - m = 0 \Leftrightarrow \dfrac{{x - m\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = 0 \Leftrightarrow  - m{x^2} + x - m = 0\), phương trình có \(\Delta  = 1 - 4{m^2}\) chưa xác định dấu nên có tối đa 2 nghiệm.

Vậy hàm số \(f\left( x \right) = \left| {\dfrac{x}{{{x^2} + 1}} - m} \right|\) có tối đa \(2 + 2 = 4\) cực trị.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com