Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng \(\frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - 2x} \right) - \cos \left( {\frac{\pi }{2} + 2x}

Câu hỏi số 338520:
Vận dụng

Biết rằng \(\frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - 2x} \right) - \cos \left( {\frac{\pi }{2} + 2x} \right)} \right] - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\) với mọi giá trị của góc lượng giác x ; trong đó a là số tự nhiên, b là số hữu tỉ thuộc \(\left[ {0;\frac{1}{2}} \right]\). Mệnh đề nào sau đây đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:338520
Phương pháp giải

Áp dụng các công thức biến tổng thành tích và công thức cộng biến đổi VT

Giải chi tiết

Ta có: \(\frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - 2x} \right) - \cos \left( {\frac{\pi }{2} + 2x} \right)} \right] - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\)

\(\begin{array}{l} \Leftrightarrow \frac{1}{2}.\left( { - 2} \right).\sin \left( {\frac{{\frac{\pi }{3} - 2x + \frac{\pi }{2} + 2x}}{2}} \right).\sin \left( {\frac{{\frac{\pi }{3} - 2x - \frac{\pi }{2} - 2x}}{2}} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow  - \sin \frac{{5\pi }}{{12}}.\sin \left( { - \frac{\pi }{{12}} - 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \sin \left( {\frac{\pi }{2} - \frac{\pi }{{12}}} \right).\sin \left( {\frac{\pi }{{12}} + 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \cos \frac{\pi }{{12}}.\sin \left( {\frac{\pi }{{12}} + 2x} \right) - \sin \frac{\pi }{{12}}.\cos \left( {\frac{\pi }{{12}} + 2x} \right) = \sin \left( {ax + b\pi } \right)\\ \Leftrightarrow \sin \left( {\frac{\pi }{{12}} + 2x - \frac{\pi }{{12}}} \right) = \sin \left( {ax + b\pi } \right) \Leftrightarrow \sin 2x = \sin \left( {ax + b\pi } \right)\\ \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 2k\,\,\,\,\left( {k \in Z} \right)\end{array} \right.\,\,\,\,\,\,\\Do\,\,\,\,b \in \left[ {0;\frac{1}{2}} \right] \Rightarrow b = 0 \Rightarrow a + b = 2.\end{array}\)

 Chọn D.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com