Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(0 < x < 1\). Giá trị nhỏ nhất của biểu thức \(f\left( x \right) = \frac{4}{x} + \frac{x}{{1 -

Câu hỏi số 338527:
Vận dụng

Cho \(0 < x < 1\). Giá trị nhỏ nhất của biểu thức \(f\left( x \right) = \frac{4}{x} + \frac{x}{{1 - x}} - 1\) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:338527
Phương pháp giải

Biến đổi biểu thức để khi áp dụng BĐT Cô-si triệt tiêu hết \(x\)

Giải chi tiết

Ta có: \(f\left( x \right) = \frac{4}{x} + \frac{x}{{1 - x}} - 1 = \frac{{4 - x}}{x} + \frac{x}{{1 - x}} = \frac{{4 - 4x + 3x}}{x} + \frac{x}{{1 - x}} = \frac{{4\left( {1 - x} \right)}}{x} + \frac{x}{{1 - x}} + 3\)

Vì  \(0 < x < 1 \Rightarrow \frac{{1 - x}}{x} > 0;\,\,\,\,\frac{x}{{1 - x}} > 0\)

Áp dụng BĐT Cô-si ta được: \(f\left( x \right) \ge 2\sqrt 4  + 3 = 7\)

Dấu “=” xảy ra \( \Leftrightarrow \frac{{x - 1}}{x} = \frac{x}{{x - 1}} \Leftrightarrow {\left( {x - 1} \right)^2} = {x^2} \Leftrightarrow x = \frac{1}{2}\,\,\,\left( {tm} \right).\)

Vậy \(\mathop {Min}\limits_{\left( {0;\,\,1} \right)} \,\,f\left( x \right) = 7\,\,\,\,khi\,\,\,\,x = \frac{1}{2}.\)

Chọn B.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com