Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình phẳng (H) giới hạn bởi đường elip có phương trình \(\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} =

Câu hỏi số 342020:
Vận dụng

Hình phẳng (H) giới hạn bởi đường elip có phương trình \(\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\). Quay \(\left( H \right)\) quanh trục hoành . Tính thể tích khối tròn xoay thu được.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:342020
Phương pháp giải

Cho hai hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\)và \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\), \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)và hai đường thẳng \(x{\rm{ }} = {\rm{ }}a;{\rm{ }}y{\rm{ }} = {\rm{ }}b\)khi quay quanh trục Ox là:

\(V = \;\pi \int_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Giải chi tiết

Do elip \(\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\) đối xứng qua trục Ox nên (H) chính là khối tròn xoay thu được khi quay đường \(y = 3.\sqrt {1 - \dfrac{{{x^2}}}{{25}}} \) quanh Ox.

Thể tích của (H) là: \(V = \;\pi \int_{ - 5}^5 {9\left( {1 - \dfrac{{{x^2}}}{{25}}} \right)dx}  = 9\;\pi \left. {\left( {x - \dfrac{{{x^3}}}{{75}}} \right)} \right|_{ - 5}^5 = 60\pi \).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com