Hàm số \(y = {x^4} + a{x^3} + b{x^2} + 1\) đạt giá trị nhỏ nhất tại \(x = 0\). Giá trị nhỏ nhất
Hàm số \(y = {x^4} + a{x^3} + b{x^2} + 1\) đạt giá trị nhỏ nhất tại \(x = 0\). Giá trị nhỏ nhất của biểu thức \(S = a + b\) là:
Đáp án đúng là: D
Quảng cáo
Hàm số \(y = f\left( x \right) = {x^4} + a{x^3} + b{x^2} + 1\) đạt giá trị nhỏ nhất tại \(x = 0\) nên \(f\left( x \right) \ge f\left( 0 \right)\,\,\forall x \in \mathbb{R} \Leftrightarrow {x^4} + a{x^3} + b{x^2} + 1 \ge 1\,\,\forall x \in \mathbb{R}\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












