Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Biết \(F\left( x \right) = {e^{2x}}\left( {a\sin x + b\cos x} \right) + \dfrac{2}{5}\)  là một nguyên hàm của\(f\left( x \right) = {e^{2x}}\sin x\,\,\,\left( {a,b \in \mathbb{Q}} \right)\). Tính giá trị biểu thức \(T = a + 2b - 1\).

Câu 345619: Biết \(F\left( x \right) = {e^{2x}}\left( {a\sin x + b\cos x} \right) + \dfrac{2}{5}\)  là một nguyên hàm của\(f\left( x \right) = {e^{2x}}\sin x\,\,\,\left( {a,b \in \mathbb{Q}} \right)\). Tính giá trị biểu thức \(T = a + 2b - 1\).

A. \(\dfrac{2}{5}\)                      

B. \( - 1\)                                     

C. \(\dfrac{3}{5}\)                      

D. \(1\)

Câu hỏi : 345619

Phương pháp giải:

Sử dụng : \(F\left( x \right)\) là một nguyên hàm của hàm \(f\left( x \right)\) nếu \({\left[ {F\left( x \right)} \right]^\prime } = f\left( x \right)\)


Sử dụng công thức đạo hàm \({\left( {u.v} \right)^\prime } = u'v + v'u\)

  • Đáp án : B
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Ta có  \(F\left( x \right) = {e^{2x}}\left( {a\sin x + b\cos x} \right) + \dfrac{2}{5}\)

    Suy ra

    \(\begin{array}{l}F'\left( x \right) = 2{e^{2x}}\left( {a\sin x + b\cos x} \right) + \left( {a\cos x - b\sin x} \right){e^{2x}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {e^{2x}}\left[ {\left( {2a - b} \right)\sin x + \left( {2b + a} \right)\cos x} \right]\end{array}\)

    Từ đề bài ta có \(F'\left( x \right) = f\left( x \right) \Leftrightarrow {e^{2x}}\left[ {\left( {2a - b} \right)\sin x + \left( {2b + a} \right)\cos x} \right] = {e^{2x}}\sin x\)

    \( \Leftrightarrow \left\{ \begin{array}{l}2a - b = 1\\2b + a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{5}\\b =  - \dfrac{1}{5}\end{array} \right.\)  suy ra \(T = a + 2b - 1 = \dfrac{2}{5} + 2.\left( { - \dfrac{1}{5}} \right) - 1 =  - 1\)

    Chọn B.

    Chú ý:

    Các em cũng có thể tích nguyên hàm hàm \(f\left( x \right)\) rồi đồng nhất với hàm \(F\left( x \right).\)

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com