Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình vuông \(ABCD\) cạnh bằng \(2\). Gọi \(M\) là trung điểm \(AB\). Cho tứ giác \(AMCD\) và các

Câu hỏi số 345645:
Vận dụng

Cho hình vuông \(ABCD\) cạnh bằng \(2\). Gọi \(M\) là trung điểm \(AB\). Cho tứ giác \(AMCD\) và các điểm trong của nó quay quanh trục \(AD\) ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:345645
Phương pháp giải

Vẽ thêm hình, sử dụng phương pháp cộng trừ thể tích các khối nón suy ra kết quả.

Chú ý: Công thức tính thể tích khối nón: \(V = \dfrac{1}{3}\pi {R^2}h\).

Giải chi tiết

Kéo dài \(CM\) cắt \(DA\) tại \(E\). Quay hình thang vuông \(AMCD\) quanh trục \(AD\) ta được hình nón cụt như hình vẽ.

Quay tam giác \(EDC\) quanh trục \(ED\) ta được hình nón.

Dễ thấy \({V_{nc}} = {V_1} - {V_2}\), ở đó \({V_1}\) là thể tích khối nón đỉnh \(E\), bán kính đáy \(DC = 2\) và \({V_2}\) là thể tích khối nón đỉnh \(E\), bán kính đáy \(AM = 1\).

Có \(\dfrac{{EA}}{{ED}} = \dfrac{{AM}}{{DC}} = \dfrac{1}{2} \Rightarrow EA = AD = 2 \Rightarrow ED = 4\)

\( \Rightarrow {V_1} = \dfrac{1}{3}\pi D{C^2}.ED = \dfrac{1}{3}\pi {.2^2}.4 = \dfrac{{16\pi }}{3}\) ;

\({V_2} = \dfrac{1}{3}\pi A{M^2}EA = \dfrac{1}{3}\pi {.1^2}.2 = \dfrac{{2\pi }}{3}\).

Vậy \(V = {V_1} - {V_2} = \dfrac{{16\pi }}{3} - \dfrac{{2\pi }}{3} = \dfrac{{14\pi }}{3}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com