Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai hàm số \(y = {x^2} + x - 1\) và \(y = {x^3} + 2{x^2} + mx - 3\). Giá trị của tham số \(m\) để

Câu hỏi số 345819:
Vận dụng cao

Cho hai hàm số \(y = {x^2} + x - 1\) và \(y = {x^3} + 2{x^2} + mx - 3\). Giá trị của tham số \(m\) để đồ thị của hai hàm số có 3 giao điểm phân biệt và 3 giao điểm đó nằm trên đường tròn bán kính bằng 3 thuộc vào khoảng nào dưới đây?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:345819
Giải chi tiết

Xét phương trình hoành độ giao điểm:

\({x^3} + 2{x^2} + mx - 3 = {x^2} + x - 1 \Leftrightarrow g\left( x \right) = {x^3} + {x^2} + \left( {m - 1} \right)x - 2 = 0\).

Đặt

\(\begin{array}{l}y = {x^2} + x - 1 \Rightarrow {y^2} = {\left( {{x^2} + x - 1} \right)^2}\\ = {x^4} + {x^2} + 1 + 2{x^3} - 2{x^2} - 2x = {x^4} + 2{x^3} - {x^2} - 2x + 1\end{array}\)

Chia \({y^2}\) cho \(g\left( x \right)\) ta được:

\(\begin{array}{l}{y^2} = g\left( x \right)\left( {x + 1} \right) - \left( {m + 1} \right){x^2} - \left( {m - 1} \right)x + 3\\ \Rightarrow {y^2} =  - m{x^2} - {x^2} - \left( {m - 1} \right)x + 3\\ \Leftrightarrow {x^2} + {y^2} + m\left( {y - x + 1} \right) + \left( {m - 1} \right)x - 3 = 0\\ \Leftrightarrow {x^2} + {y^2} - x + my + m - 3 = 0\,\,\,\left( C \right)\end{array}\)

\(\left( C \right)\) có bán kính bằng 3 (gt)

\(\begin{array}{l} \Rightarrow {\left( {\dfrac{1}{2}} \right)^2} + {\left( {\dfrac{m}{2}} \right)^2} - m + 3 = 9 \Leftrightarrow \dfrac{{{m^2}}}{4} - m - \dfrac{{23}}{4} = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 2 + 3\sqrt 3  \approx 7,2\\m = 2 - 3\sqrt 3  \approx  - 3,2\end{array} \right.\end{array}\)

Sử dụng MTCT thử lại \(m = 2 - 3\sqrt 3 \) thì phương trình hoành độ giao điểm có 3 nghiệm phân biệt.

Sưu tầm: FB Strong Team Toán VD - VDC

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com