Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số phức \(z = {\left( {2i - 1} \right)^2} - {\left( {3 + i} \right)^2}\). Tổng phần thực và phần ảo

Câu hỏi số 347197:
Thông hiểu

Cho số phức \(z = {\left( {2i - 1} \right)^2} - {\left( {3 + i} \right)^2}\). Tổng phần thực và phần ảo và phần ảo của \(z\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:347197
Phương pháp giải

- Rút gọn \(z\), sử dụng các phép toán với số phức.

- Tìm phần thực và phần ảo của \(z\) và kết luận.

Giải chi tiết

Ta có:

\(\begin{array}{l}z = {\left( {2i - 1} \right)^2} - {\left( {3 + i} \right)^2} = 4{i^2} - 4i + 1 - \left( {9 + 6i + {i^2}} \right)\\ =  - 4 - 4i + 1 - 9 - 6i - \left( { - 1} \right) =  - 11 - 10i\end{array}\) 

\( \Rightarrow z =  - 11 - 10i\) nên phần thực của \(z\) bằng \( - 11\) và phần ảo bằng \( - 10\).

Tổng phần thực và phần ảo là \(\left( { - 11} \right) + \left( { - 10} \right) =  - 21\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com