Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết \(\int\limits_2^{e + 1} {\dfrac{{\ln \left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}dx = a + b{e^{ -

Câu hỏi số 347208:
Vận dụng

Biết \(\int\limits_2^{e + 1} {\dfrac{{\ln \left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}dx = a + b{e^{ - 1}}} \) với \(a,b \in \mathbb{Z}.\) Chọn khẳng định đúng trong các khẳng định sau:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:347208
Phương pháp giải

Sử dụng phương pháp tích phân từng phần với \(\left\{ \begin{array}{l}\ln \left( {x - 1} \right) = u\\\dfrac{1}{{{{\left( {x - 1} \right)}^2}}}dx = dv\end{array} \right.\)

Giải chi tiết

Đặt  \(\left\{ \begin{array}{l}\ln \left( {x - 1} \right) = u\\\dfrac{1}{{{{\left( {x - 1} \right)}^2}}}dx = dv\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{x - 1}}dx = du\\ - \dfrac{1}{{x - 1}} = v\end{array} \right.\)

 Ta có \(\int\limits_2^{e + 1} {\dfrac{{\ln \left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}dx = \ln \left( {x - 1} \right).\left. {\left( { - \dfrac{1}{{x - 1}}} \right)} \right|} _2^{e + 1} + \int\limits_2^{e + 1} {\dfrac{1}{{{{\left( {x - 1} \right)}^2}}}dx} \)

                               \( =  - \dfrac{1}{e} - \left. {\dfrac{1}{{x - 1}}} \right|_2^{e + 1} =  - \dfrac{1}{e} - \dfrac{1}{e} + 1 = 1 - 2.{e^{ - 1}}\)

Suy ra \(a = 1;\,\,\,b =  - 2 \Rightarrow a + b =  - 1.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com