Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên.

Câu hỏi số 347216:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Diện tích hai phần \(A\) và \(B\) lần lượt là \(\dfrac{{16}}{3}\) và \(\dfrac{{63}}{4}.\) Tính \(\int\limits_{ - 1}^{\frac{3}{2}} {f\left( {2x + 1} \right)dx} \).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:347216
Phương pháp giải

Sử dụng phương pháp đổi biến số để  đưa tích phân về biến \(t.\)

Sử dụng công thức \(\int\limits_a^c {f\left( x \right)d} x = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx} \).

Giải chi tiết

Xét  \(\int\limits_{ - 1}^{\frac{3}{2}} {f\left( {2x + 1} \right)dx} \). Đặt \(2x + 1 = t \Leftrightarrow 2dx = dt \Leftrightarrow dx = \dfrac{{dt}}{2}\).

Đổi cận:\(\left\{ \begin{array}{l}x =  - 1 \Rightarrow t =  - 1\\x = \dfrac{3}{2} \Rightarrow t = 4\end{array} \right.\).

Khi đó ta có \(\int\limits_{ - 1}^{\dfrac{3}{2}} {f\left( {2x + 1} \right)dx}  = \dfrac{1}{2}\int\limits_{ - 1}^4 {f\left( t \right)dt}  = \dfrac{1}{2}\int\limits_{ - 1}^4 {f\left( x \right)dx} \)\( = \dfrac{1}{2}\left( {\int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^4 {f\left( x \right)dx} } \right)\)

Từ hình vẽ ta có \(\int\limits_{ - 1}^1 {f\left( x \right)dx}  = \dfrac{{16}}{3};\,\int\limits_1^4 {f\left( x \right)dx}  =  - \dfrac{{63}}{4}\)

Nên \(\int\limits_{ - 1}^{\dfrac{3}{2}} {f\left( {2x + 1} \right)dx}  = \dfrac{1}{2}\left( {\int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^4 {f\left( x \right)dx} } \right) = \dfrac{1}{2}\left( {\dfrac{{16}}{3} - \dfrac{{63}}{4}} \right) =  - \dfrac{{125}}{{24}}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com