Cho hàm số \(y = {x^3} - 6mx + 4\) có đồ thị \(\left( {{C_m}} \right)\). Gọi \({m_0}\) là giá trị của
Cho hàm số \(y = {x^3} - 6mx + 4\) có đồ thị \(\left( {{C_m}} \right)\). Gọi \({m_0}\) là giá trị của \(m\) để đường thẳng đi qua điểm cực đại, điểm cực tiểu của \(\left( {{C_m}} \right)\) cắt đường tròn tâm \(I\left( {1;0} \right)\), bán kính \(\sqrt 2 \) tại hai điểm phân biệt \(A,B\) sao cho tam giác \(IAB\) có diện tích lớn nhất. Chọn khẳng định đúng?
Đáp án đúng là: C
Quảng cáo
- Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
- Viết công thức tính diện tích tam giác \(IAB\) và đánh giá \(GTLN\) của diện tích.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













