Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho bất phương trình \(\sqrt[3]{{{x^4} + {x^2} + m}} - \sqrt[3]{{2{x^2} + 1}} + {x^2}\left( {{x^2} - 1} \right)

Câu hỏi số 347228:
Vận dụng

Cho bất phương trình \(\sqrt[3]{{{x^4} + {x^2} + m}} - \sqrt[3]{{2{x^2} + 1}} + {x^2}\left( {{x^2} - 1} \right) > 1 - m\). Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình nghiệm đúng với mọi \(x > 1.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:347228
Phương pháp giải

Biến đổi phương trình đã cho về dạng \(f\left( u \right) > f\left( v \right) \Leftrightarrow u > v\) với \(f\left( t \right)\) là hàm đơn điệu

Từ đó cô lập m đưa về dạng \(g\left( x \right) > m\) với mọi \(x > 1\)

Lập BBT của hàm số \(y = g\left( x \right)\) trên \(\left( {1; + \infty } \right)\) rồi kết luận.

Giải chi tiết

Ta có \(\sqrt[3]{{{x^4} + {x^2} + m}} - \sqrt[3]{{2{x^2} + 1}} + {x^2}\left( {{x^2} - 1} \right) > 1 - m\)

\( \Leftrightarrow \sqrt[3]{{{x^4} + {x^2} + m}} - \sqrt[3]{{2{x^2} + 1}} + {x^4} - {x^2} > 1 - m\)

\( \Leftrightarrow \sqrt[3]{{{x^4} + {x^2} + m}} + {x^4} + {x^2} + m > \sqrt[3]{{2{x^2} + 1}} + 2{x^2} + 1\)  (*)

Xét hàm số \(f\left( t \right) = {t^3} + t\,\,\, \Rightarrow y' = 2{t^2} + 1 > 0\)  nên hàm số \(f\left( t \right)\) là hàm đồng biến

Khi đó phương trình (*) trở thành \(f\left( {{x^4} + {x^2} + m} \right) > f\left( {2{x^2} + 1} \right) \Leftrightarrow {x^4} + {x^2} + m > 2{x^2} + 1 \Leftrightarrow m >  - {x^4} + {x^2} + 1\)

Xét hàm số \(g\left( x \right) =  - {x^4} + {x^2} + 1\)  với \(x > 1\)

Có \(g'\left( x \right) =  - 4{x^3} + 2x =  - 2x\left( {2{x^2} - 1} \right) < 0;\,\forall x > 1\)

Ta có BBT của hàm \(g\left( x \right) =  - {x^4} + {x^2} + 1\) với \(x > 1\)

Từ BBT suy ra \(m \ge 1.\)

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com