Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) cho hai điểm \(M\left( { - 2; - 2;1} \right),A\left( {1;2; - 3} \right)\) và đường

Câu hỏi số 347230:
Vận dụng

Trong không gian \(Oxyz,\) cho hai điểm \(M\left( { - 2; - 2;1} \right),A\left( {1;2; - 3} \right)\) và đường thẳng \(d:\dfrac{{x + 1}}{2} = \dfrac{{y - 5}}{2} = \dfrac{z}{{ - 1}}.\) Gọi \(\Delta \) là đường thẳng qua \(M,\) vuông góc với đường thẳng \(d,\) đồng thời cách điểm \(A\) một khoảng bé nhất. Khoảng cách bé nhất đó là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:347230
Phương pháp giải

+ Viết phương trình mặt phẳng \(\left( P \right)\) qua \(M\) và vuông góc với đường thẳng \(d.\)

+ Khi đó \(d\left( {A,\Delta } \right) \ge d\left( {A,\left( P \right)} \right)\)

+ Tính khoảng cách \(d\left( {A,\left( P \right)} \right)\)

Giải chi tiết

Gọi \(\left( P \right)\) là mặt phẳng qua \(M\left( { - 2; - 2;1} \right)\) và nhận \(\overrightarrow {{u_d}}  = \left( {2;2; - 1} \right)\) làm VTPT

Phương trình mặt phẳng \(\left( P \right):2\left( {x + 2} \right) + 2\left( {y + 2} \right) - \left( {z - 1} \right) = 0\) \( \Leftrightarrow 2x + 2y - z + 9 = 0\)

Suy ra \(\Delta  \subset \left( P \right)\). Khi đó ta có \(d\left( {A,\Delta } \right) \ge d\left( {A,\left( P \right)} \right)\)

Lại có \(d\left( {A,\left( P \right)} \right) = \dfrac{{\left| {2.1 + 2.2 - \left( { - 3} \right) + 9} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 6\)

Vậy khoảng cách nhỏ nhất là \(d = 6.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com