Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho  hàm  số \(y = f\left( x \right)\) với \(f\left( 0 \right) = f\left( 1 \right) = 1.\) Biết  rằng:

Câu hỏi số 348531:
Vận dụng

Cho  hàm  số \(y = f\left( x \right)\) với \(f\left( 0 \right) = f\left( 1 \right) = 1.\) Biết  rằng: \(\int\limits_0^1 {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]dx = ae + b,} \) \(a,b \in \mathbb{Z}.\) Giá trị biểu thức \({a^{2019}} + {b^{2019}}\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:348531
Phương pháp giải

\(\int\limits_a^b {f'\left( x \right)dx = \left. {f\left( x \right)} \right|_a^b} .\)

Giải chi tiết

\(\begin{array}{l}\int\limits_0^1 {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]dx}  = \int\limits_0^1 {\left[ {{e^x}f\left( x \right) + {e^x}f'\left( x \right)} \right]dx} \\ = \int\limits_0^1 {\left[ {{e^x}f\left( x \right)} \right]'dx}  = \left. {\left[ {{e^x}f\left( x \right)} \right]} \right|_0^1 = e.f\left( 1 \right) - f\left( 0 \right) = e - 1\\ \Rightarrow a = 1;\,\,\,b =  - 1 \Rightarrow {a^{2019}} + {b^{2019}} = {1^{2019}} + {\left( { - 1} \right)^{2019}} = 1 - 1 = 0\end{array}\)

Chọn: C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com