Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị dương của số thực \(a\) sao cho phương trình \({z^2} + \sqrt 3 z + {a^2} - 2a =

Câu hỏi số 348533:
Vận dụng

Có bao nhiêu giá trị dương của số thực \(a\) sao cho phương trình \({z^2} + \sqrt 3 z + {a^2} - 2a = 0\) có nghiệm phức \({z_0}\) thỏa \(\left| {{z_0}} \right| = \sqrt 3 \).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:348533
Phương pháp giải

Giải phương trình bậc hai với hệ số thực trên tập số phức.

Giải chi tiết

TH1: Phương trình \({z^2} + \sqrt 3 z + {a^2} - 2a = 0\,\,\,\,\left( * \right)\) có nghiệm thực thỏa mãn \(\left| {{z_0}} \right| = \sqrt 3  \Leftrightarrow \left[ \begin{array}{l}{z_0} = \sqrt 3 \\{z_0} =  - \sqrt 3 \end{array} \right.\).

Nếu phương trình có nghiệm \({z_0} = \sqrt 3  \Leftrightarrow 3 + 3 + {a^2} - 2a = 0\)  (vô nghiệm).

Nếu phương trình có nghiệm \({z_0} =  - \sqrt 3  \Leftrightarrow 3 - 3 + {a^2} - 2a = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\,\,\left( {ktm} \right)\\a = 2\,\,\left( {tm} \right)\end{array} \right.\).

TH2: Phương trình \({z^2} + \sqrt 3 z + {a^2} - 2a = 0\,\,\,\,\left( * \right)\) có nghiệm phức, tức là có hai nghiệm phức liên hợp.

Ta có: \(\Delta  = 3 - 4\left( {{a^2} - 2a} \right) =  - 4{a^2} + 8a + 3 < 0 \Leftrightarrow \left[ \begin{array}{l}a > \dfrac{{2 + \sqrt 7 }}{2}\\a < \dfrac{{2 - \sqrt 7 }}{2}\end{array} \right.\).

Khi đó phương trình có 2 nghiệm phức \({z_{1,2}} = \dfrac{{ - \sqrt 3  \pm i\sqrt {4{a^2} - 8a - 3} }}{2}\).

Theo bài ra ta có: \(\left| {{z_0}} \right| = \sqrt 3  \Rightarrow \dfrac{{3 + 4{a^2} - 8a - 3}}{4} = 3 \Leftrightarrow 4{a^2} - 8a - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}a =  - 1\,\,\left( {ktm} \right)\\a = 3\,\,\,\,\,\,\left( {tm} \right)\end{array} \right.\).

Vậy, có 2 giá trị của a thỏa mãn yêu cầu bài toán.

Chú ý khi giải

Tập số thực là tập con của tập số phức, mọi số thực đều là số phức có phần ảo bằng 0.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com