Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số phức \(z\) thỏa mãn \(\left( {2 - i} \right)z + 3 + 16i = 2\left( {\overline z  + i} \right).\) Môđun

Câu hỏi số 350656:
Vận dụng

Cho số phức \(z\) thỏa mãn \(\left( {2 - i} \right)z + 3 + 16i = 2\left( {\overline z  + i} \right).\) Môđun của \(z\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:350656
Phương pháp giải

+) Đặt \(z = a + bi\), giải phương trình tìm \(z\).

+) \(z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} \).

Giải chi tiết

Đặt \(z = a + bi\,\,\left( {a;b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi\).

Theo bài ra ta có: \(\left( {2 - i} \right)z + 3 + 16i = 2\left( {\overline z  + i} \right).\)

\(\begin{array}{l} \Leftrightarrow \left( {2 - i} \right)\left( {a + bi} \right) + 3 + 16i = 2\left( {a - bi + i} \right)\\ \Leftrightarrow 2a + 2bi - ai + b + 3 + 16i = 2a - 2bi + 2i\\ \Leftrightarrow \left\{ \begin{array}{l}2a + b + 3 = 2a\\2b - a + 16 =  - 2b + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 3\\4b - a =  - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 3\\a = 2\end{array} \right.\\ \Rightarrow z = 2 - 3i \Rightarrow \left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {13} \end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com