Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\). Biết \(f\left( 0 \right) = 4\) và \(f'\left( x \right) = 2{\sin ^2}x + 3\),

Câu hỏi số 350657:
Vận dụng

Cho hàm số \(f\left( x \right)\). Biết \(f\left( 0 \right) = 4\) và \(f'\left( x \right) = 2{\sin ^2}x + 3\), \(\forall x \in \mathbb{R}\), khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {f\left( x \right)} dx\)  bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:350657
Phương pháp giải

+) Tính \(f\left( x \right) = \int {f'\left( x \right)dx} \).

+) Sử dụng các công thức nguyên hàm cơ bản để tính \(\int\limits_0^{\dfrac{\pi }{4}} {f\left( x \right)} dx\).

Giải chi tiết

Ta có \(f'\left( x \right) = 2{\sin ^2}x + 3 = 1 - \cos 2x + 3 = 4 - \cos 2x\).

\( \Rightarrow f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\left( {4 - \cos 2x} \right)dx}  = 4x - \dfrac{1}{2}\sin 2x + C\)

Theo giả thiết có \(f\left( 0 \right) = 4 \Leftrightarrow 4.0 - \dfrac{1}{2}\sin 0 + C = 4 \Leftrightarrow C = 4\).

\(\begin{array}{l} \Rightarrow f\left( x \right) = 4x - \dfrac{1}{2}\sin 2x + 4\\ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {f\left( x \right)dx}  = \int\limits_0^{\dfrac{\pi }{4}} {\left( {4x - \dfrac{1}{2}\sin 2x + 4} \right)dx} \\ = \left. {\left( {2{x^2} + \dfrac{1}{4}\cos 2x + 4x} \right)} \right|_0^{\dfrac{\pi }{4}} = 2\dfrac{{{\pi ^2}}}{{16}} + \pi  - \dfrac{1}{4} = \dfrac{{{\pi ^2} + 8\pi  - 2}}{8}\end{array}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com