Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng
Giải phương trình \({x^2} - 4x + 3 = 0\).

Đáp án đúng là: D

Câu hỏi:354832
Phương pháp giải

Sử dụng biệt thức \(\Delta \) để giải phương trình bậc hai, hoặc sử dụng các công thức nhẩm nghiệm của phương trình bậc hai.

Giải chi tiết

Phương trình \({x^2} - 4x + 3 = 0\) có các hệ số \(a = 1,\,\,b =  - 4,\,\,c = 3 \Rightarrow a + b + c = 1 - 4 + 3 = 0\).

Khi đó phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 1\\{x_2} = \frac{c}{a} = \frac{3}{1} = 3\end{array} \right.\).

Vậy tập nghiệm của phương trình là \(S = \left\{ {1;3} \right\}\).

Đáp án cần chọn là: D

Câu hỏi số 2:
Vận dụng
Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) (m là tham số). Chứng minh rằng phương trình luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức: \(\left( {x_1^2 - 2m{x_1} - {x_2} + 2m - 3} \right)\left( {x_2^2 - 2m{x_2} - {x_1} + 2m - 3} \right) = 19\).

Đáp án đúng là: C

Câu hỏi:354833
Phương pháp giải

Tìm điều kiện để phương trình bậc hai có 2 nghiệm phân biệt (\(\Delta  > 0\) hoặc \(\Delta ' > 0\)), áp dụng định lí Vi-ét.

Giải chi tiết

\({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) (1).

Ta có

\(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - \left( {2m - 5} \right) = {m^2} - 2m + 1 - 2m + 5\\\,\,\,\,\,\, = {m^2} - 4m + 6 = {m^2} - 4m + 4 + 2 = {\left( {m - 2} \right)^2} + 2 > 0\,\,\forall m\end{array}\)

Do đó phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi m.

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = 2m - 5\end{array} \right.\).

Do \({x_1},\,\,{x_2}\) là nghiệm của phương trình (1) nên ta có: \(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}x_1^2 - 2\left( {m - 1} \right){x_1} + 2m - 5 = 0\\x_2^2 - 2\left( {m - 1} \right){x_2} + 2m - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x_1^2 - 2m{x_1} + 2{x_1} + 2m - 5 = 0\\x_2^2 - 2m{x_2} + 2{x_2} + 2m - 5 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x_1^2 - 2m{x_1} + 2m - 3 + 2{x_1} - 2 = 0\\x_2^2 - 2m{x_2} + 2m - 3 + 2{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x_1^2 - 2m{x_1} + 2m - 3 =  - 2{x_1} + 2\\x_2^2 - 2m{x_2} + 2m - 3 =  - 2{x_2} + 2\end{array} \right.\end{array}\)

Theo bài ra ta có:

\(\begin{array}{l}\left( {x_1^2 - 2m{x_1} - {x_2} + 2m - 3} \right)\left( {x_2^2 - 2m{x_2} - {x_1} + 2m - 3} \right) = 19\\ \Leftrightarrow \left( { - 2{x_1} + 2 - {x_2}} \right)\left( { - 2{x_2} + 2 - {x_1}} \right) = 19\\ \Leftrightarrow \left( { - 2{x_1} - {x_2} + 2} \right)\left( { - {x_1} - 2{x_2} + 2} \right) = 19\\ \Leftrightarrow \left( { - 2{x_1} - {x_2}} \right)\left( { - {x_1} - 2{x_2}} \right) + 2\left( { - 2{x_1} - {x_2}} \right) + 2\left( { - {x_1} - 2{x_2}} \right) + 4 = 19\\ \Leftrightarrow 2x_1^2 + 4{x_1}{x_2} + {x_1}{x_2} + 2x_2^2 + 2\left( { - 3{x_1} - 3{x_2}} \right) = 15\\ \Leftrightarrow 2\left( {x_1^2 + x_2^2} \right) + 5{x_1}{x_2} - 6\left( {{x_1} + {x_2}} \right) = 15\\ \Leftrightarrow 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 5{x_1}{x_2} - 6\left( {{x_1} + {x_2}} \right) = 15\\ \Leftrightarrow 2{\left( {{x_1} + {x_2}} \right)^2} + {x_1}{x_2} - 6\left( {{x_1} + {x_2}} \right) = 15\\ \Leftrightarrow 2.4{\left( {m - 1} \right)^2} + 2m - 5 - 12\left( {m - 1} \right) = 15\\ \Leftrightarrow 8{m^2} - 16m + 8 + 2m - 5 - 12m + 12 = 15\\ \Leftrightarrow 8{m^2} - 26m = 0 \Leftrightarrow 2m\left( {4m - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\4m - 13 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \frac{{13}}{4}\end{array} \right.\end{array}\)

Vậy \(m = 0\) hoặc \(m = \frac{{13}}{4}\).

Đáp án cần chọn là: C

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com