Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong khai triển nhị thức \({\left( {8{a^3} - \dfrac{b}{2}} \right)^6}\), số hạng thứ \(4\) là:

Câu hỏi số 357787:
Thông hiểu

Trong khai triển nhị thức \({\left( {8{a^3} - \dfrac{b}{2}} \right)^6}\), số hạng thứ \(4\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:357787
Phương pháp giải

Sử dụng công thức khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \).

Giải chi tiết

Ta có : \({\left( {8{a^3} - \dfrac{b}{2}} \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{{\left( {8{a^3}} \right)}^{6 - k}}.{{\left( { - \dfrac{b}{2}} \right)}^k}} \)

Số hạng thứ \(4\) ứng với \(k = 3\) nên số hạng đó là \(C_6^3.{\left( {8{a^3}} \right)^{6 - 3}}.{\left( { - \dfrac{b}{2}} \right)^3} =  - C_6^3{.8^3}.{a^9}.\dfrac{{{b^3}}}{8} =  - 1280{a^9}{b^3}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com