Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình giải tích phẳng

Câu hỏi số 35801:

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(0;2), B(0;-\frac{4}{5}) và hai đường thẳng d1 : x- y -1=0, d2 :2x -y -2= 0. Hãy viết phương trình đường thẳng d đi qua gốc tọa độ và cắt d1, d2 lần lượt tại M, N sao cho AM song song với BN.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:35801
Giải chi tiết

Giả sử M \in d1\Rightarrow M (t;-1+t), M \in d2   \Rightarrow N(s;-2-2s)

Nếu t=0 \Rightarrow M(0;-1) \Rightarrow AM \equiv Oy (loại)

Do O, M, N thẳng hàng và AM//BN nên:

\left\{\begin{matrix} \overrightarrow{OM}=k\overrightarrow{ON} & \\ \overrightarrow{AM}=l\overrightarrow{BN}& \end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{s}{t}=\frac{-2-2s}{-1+t} & \\ \frac{s}{t}=\frac{\frac{-6}{5}-2s}{-3+t} & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3st=s-2t & \\ 15st=15s-6t & \end{matrix}\right.\Rightarrow t=-\frac{5}{2}

\left\{\begin{matrix} t=2 & \\ s=-\frac{4}{5} & \end{matrix}\right.

Vậy M(2;1), N (-\frac{4}{5};\frac{2}{5})

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com