Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y =  - {x^3} - m{{\rm{x}}^2} + \left( {4m + 9} \right)x + 5\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?

Câu 361302: Cho hàm số \(y =  - {x^3} - m{{\rm{x}}^2} + \left( {4m + 9} \right)x + 5\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?

A. 7

B. 4

C. 6

D. 5

Câu hỏi : 361302
  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    \(y =  - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5.\)

    \( \Rightarrow y' =  - 3{x^2} - 2mx + 4m + 9 \le 0.\)

    Để hàm số NB trên\(\mathbb{R}\,\,\)\( \Rightarrow y' \le 0\,\,\forall x \in R\)

    \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\Delta  \le 0\\ - 3 < 0\,(luon\,dung)\end{array} \right. \Leftrightarrow 4{m^2} + 12\left( {4m + 9} \right) \le 0\\ \Leftrightarrow 4{m^2} + 48m + 108 \le 0 \Leftrightarrow  - 9 \le m \le  - 3.\end{array}\)

    \( \Rightarrow m \in \left\{ { - 9; - 8; - 7; - 6; - 5; - 4; - 3} \right\}\) là các giá trị nguyên cần tìm

    Vậy có 7 giá trị \(m\) thỏa mãn.

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com