Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các giá trị của m để hàm số \(y = \dfrac{1}{3}\left( {m - 1} \right){x^3} - \left( {m - 1}

Câu hỏi số 361304:
Vận dụng

Tìm các giá trị của m để hàm số \(y = \dfrac{1}{3}\left( {m - 1} \right){x^3} - \left( {m - 1} \right){x^2} + x + 2\) đồng biến trên \(\mathbb{R}\). Kết quả của bài toán trên là?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:361304
Giải chi tiết

\(\begin{array}{l}y = \dfrac{1}{3}\left( {m - 1} \right){x^3} - \left( {m - 1} \right){x^2} + x + 2\\ \Rightarrow y' = \left( {m - 1} \right){x^2} - 2\left( {m - 1} \right)x + 1 \ge 0\end{array}\)

TH1: \(a \ne 0 \Leftrightarrow m \ne 1\)

Để hàm số đồng biến trên \(\mathbb{R}\)\( \Rightarrow y' \ge 0\,\,\forall x \in \mathbb{R}\).

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}a = m - 1 > 0\\\Delta  = 4{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 > 0\\4{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 1\\4{m^2} - 12m + 8 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\1 \le m \le 2\end{array} \right. \Rightarrow 1 < m \le 2.\end{array}\)

TH2: \(a = 0 \Leftrightarrow m = 1\)

\( \Rightarrow y = x + 2\)

\( + y' = 1 > 0 \Rightarrow \)Hàm số luôn đồng biến (đúng yêu cầu bài toán).Vậy \(m = 1\left( {TM} \right).\)

+ Kết hợp TH1 và TH2 ta có \(1 \le m \le 2.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com