Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y=\dfrac{{{m}^{2}}x+1}{x-1}\). Xác định m để hàm số đạt giá trị nhỏ nhất bằng 4

Câu hỏi số 361576:
Vận dụng

Cho hàm số \(y=\dfrac{{{m}^{2}}x+1}{x-1}\). Xác định m để hàm số đạt giá trị nhỏ nhất bằng 4 trên đoạn \(\left[ -2;-1 \right]\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:361576
Giải chi tiết

\({y}'=\dfrac{-{{m}^{2}}-1}{{{(x-1)}^{2}}}=\dfrac{-({{m}^{2}}+1)}{{{(x-1)}^{2}}}<0\Rightarrow \) Hàm số nghịch biến (Là hàm mà y tăng thì x giảm, y giảm thì x tăng)

\( \Rightarrow \) Giá trị nhỏ nhất sẽ đạt x lớn nhất.

\( \Rightarrow \) Giá trị nhỏ nhất đạt tại \(x =  - 1\)

\( \Leftrightarrow Min = y( - 1) = \dfrac{{ - {m^2} + 1}}{{ - 2}}\)

Mà theo đề bài \(Min = 4\) \( \Rightarrow \dfrac{{ - {m^2} + 1}}{{ - 2}} = 4 \Leftrightarrow  - {m^2} + 1 =  - 8 \Leftrightarrow {m^2} = 9 \Leftrightarrow m =  \pm 3\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com