Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số nào dưới đây nghịch biến trên các khoảng xác định của chúng?

Câu hỏi số 362371:
Thông hiểu

Hàm số nào dưới đây nghịch biến trên các khoảng xác định của chúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:362371
Giải chi tiết

+ Xét đáp án A: \(y = {x^4} + 2{x^2} - 2018\) có \(y' = 4{x^3} + 4x = 0 \Leftrightarrow x = 0\).

BBT:

Hàm số đồng biến trên \(\left( {0; + \infty } \right)\) và nghịch biến trên \(\left( { - \infty ;0} \right)\). Loại đáp án A.

+ Xét đáp án B: \(y = \dfrac{{x + 2019}}{{x - 2018}}\) ta có \(y' = \dfrac{{ - 4037}}{{{{\left( {x - 2018} \right)}^2}}} < 0\,\,\forall x \ne 2018 \Rightarrow \) Hàm số luôn nghịch biến trên các khoảng xác định.

+ Xét đáp án C: \(y = \dfrac{{x - 2}}{{x + 2018}}\) có \(y' = \dfrac{{2020}}{{{{\left( {x + 2018} \right)}^2}}} > 0\,\,\forall x \ne  - 2018 \Rightarrow \) Hàm số luôn đồng biến trên các khoảng xác định nên loại đáp án C.

+ Xét đáp án D: \(y = {x^3} - 3x + 2019\) có \(y' = 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\).

BBT:

Hàm số dồng biến trên \(\left( { - \infty ; - 1} \right);\,\,\left( {1; + \infty } \right)\) và nghịch biến trên \(\left( {0;1} \right)\). Loại đáp án D.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com