Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định giá trị của tham số \(m\) để hàm số sau có cực trị: \(y = {x^3} - 3\left( {m - 1}

Câu hỏi số 366831:
Thông hiểu

Xác định giá trị của tham số \(m\) để hàm số sau có cực trị: \(y = {x^3} - 3\left( {m - 1} \right){x^2} - 3\left( {m + 3} \right)x - 5\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:366831
Phương pháp giải

Hàm số có cực trị nếu đạo hàm đổi dấu trên TXĐ \(D\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} - 6\left( {m - 1} \right)x - 3\left( {m + 3} \right)\).

Hàm số có cực trị nếu đạo hàm đổi dấu trên \(\mathbb{R}\).

\( \Leftrightarrow 3{x^2} - 6\left( {m - 1} \right)x - 3\left( {m + 3} \right) = 0\) có hai nghiệm phân biệt.

\( \Leftrightarrow \Delta ' = 9{\left( {m - 1} \right)^2} + 9\left( {m + 3} \right) > 0 \Leftrightarrow 9\left( {{m^2} - m + 4} \right) > 0\)  (luôn đúng với \(\forall m\))

Vậy với mọi \(m \in \mathbb{R}\) thì hàm số luôn có cực trị.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com