Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^3} + \frac{3}{2}{x^2}\). Khoảng cách \(d\) giữa hai điểm cực trị của đồ thị

Câu hỏi số 366832:
Vận dụng

Cho hàm số \(y = {x^3} + \frac{3}{2}{x^2}\). Khoảng cách \(d\) giữa hai điểm cực trị của đồ thị hàm số là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:366832
Phương pháp giải

- Tìm hai điểm cực trị của đồ thị hàm số.

- Tính khoảng cách theo công thức \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \).

Giải chi tiết

Ta có: \(y' = 3{x^2} + 3x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\end{array} \right.\).

\(y'' = 6x + 3,\,\,y''\left( 0 \right) = 3 > 0,y''\left( { - 1} \right) =  - 3 < 0\).

Do đó \(x = 0\) là điểm cực tiểu \( \Rightarrow {y_{CT}} = 0 \Rightarrow O\left( {0;0} \right)\) là điểm cực tiểu của đồ thị hàm số.

\(x =  - 1\) là điểm cực đại của hàm số \( \Rightarrow {y_{CD}} = \frac{1}{2} \Rightarrow A\left( { - 1;\frac{1}{2}} \right)\) là điểm cực đại của đồ thị hàm số.

Vậy khoảng cách \(d = OA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}}  = \frac{{\sqrt 5 }}{2}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com