Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số tự nhiên nhỏ nhất, biết rằng khi chia cho \(8,\,\,10,\,\,15,\,\,20\) được số dư theo thứ

Câu hỏi số 372760:
Vận dụng

Tìm số tự nhiên nhỏ nhất, biết rằng khi chia cho \(8,\,\,10,\,\,15,\,\,20\) được số dư theo thứ tự \(5,\,\,7,\,\,12,\,\,17.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:372760
Phương pháp giải

Đưa bài toán về dạng tìm BC hoặc BCNN.

Giải chi tiết

Gọi số tự nhiên cần tìm là \(a\,.\)

Theo bài ra ta có:  \(\left\{ \begin{array}{l}a - 5\,\, \vdots \,\,8\\a - 7\,\, \vdots \,\,10\\a - 12\,\, \vdots \,\,15\\a - 17\,\, \vdots \,\,20\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a - 5 + 8\,\, \vdots \,\,8\\a - 7 + 10\,\, \vdots \,\,10\\a - 12 + 15\,\, \vdots \,\,15\\a - 17 + 20\,\, \vdots \,\,20\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a + 3\,\, \vdots \,\,8\\a + 3\,\, \vdots \,\,10\\a + 3\,\, \vdots \,\,15\\a + 3\,\, \vdots \,\,20\end{array} \right.\)

Mà \(a\) là số tự nhiên nhỏ nhất \( \Rightarrow \left( {a + 3} \right) \in BC\left( {8;10;15;20} \right)\)

\(\left\{ \begin{array}{l}8 = {2^3}\\10 = 2.5\\15 = 3.5\\20 = {2^2}.5\end{array} \right. \Rightarrow BCNN\left( {8;10;15;20} \right) = {2^3}.3.5 = 120\)

\(\begin{array}{l} \Rightarrow a + 3 = BCNN\left( {8;10;15;20} \right) = 120\\ \Rightarrow a = 120 - 3 = 117.\end{array}\)

Vậy số tự nhiên \(a\) cần tìm là \(117\).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com