Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số tự nhiên \(n\), biết \({2^n} - 1 - 2 - {2^2} - {2^3} - ... - {2^{100}} = 1\)

Câu hỏi số 373094:
Vận dụng cao

Tìm số tự nhiên \(n\), biết \({2^n} - 1 - 2 - {2^2} - {2^3} - ... - {2^{100}} = 1\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:373094
Phương pháp giải

Biến đổi:

 \(\begin{array}{l}{2^n} - 1 - 2 - {2^2} - {2^3} - ... - {2^{100}} = 1\\ \Rightarrow {2^n} - 1 = 1 + 2 + {2^2} + {2^3} + ... + {2^{100}}\end{array}\)

Tính giá trị biểu thức \(1 + 2 + {2^2} + {2^3} + ... + {2^{100}}\), sau đó dựa vào kết quả để tìm \(n\).

Giải chi tiết

Ta có:

\(\begin{array}{l}{2^n} - 1 - 2 - {2^2} - {2^3} - ... - {2^{100}} = 1\\ \Rightarrow {2^n} - 1 = 1 + 2 + {2^2} + {2^3} + ... + {2^{100}}\end{array}\)

Đặt \(A = 1 + 2 + {2^2} + {2^3} + ... + {2^{100}}\)

\(\begin{array}{l} \Rightarrow 2.A = 2.\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{100}}} \right) = 2 + {2^2} + {2^3} + ... + {2^{101}}\\ \Rightarrow 2A - A = \left( {2 + {2^2} + {2^3} + ... + {2^{101}}} \right) - \left( {1 + 2 + {2^2} + {2^3} + ... + {2^{100}}} \right)\\ \Rightarrow A = 2 + {2^2} + {2^3} + ... + {2^{101}} - 1 - 2 - {2^2} - {2^3} - ... - {2^{100}}\\ \Rightarrow A = {2^{101}} - 1\end{array}\)

Suy ra \({2^n} - 1 = {2^{101}} - 1\) . Do đó \(n = 101\) .

Vậy \(n = 101.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com