Cho \(x = 2019!\). Tính \(A = \dfrac{1}{{{{\log }_{{2^{2019}}}}x}} + \dfrac{1}{{{{\log }_{{3^{2019}}}}x}} + ... +
Cho \(x = 2019!\). Tính \(A = \dfrac{1}{{{{\log }_{{2^{2019}}}}x}} + \dfrac{1}{{{{\log }_{{3^{2019}}}}x}} + ... + \dfrac{1}{{{{\log }_{{{2018}^{2019}}}}x}} + \dfrac{1}{{{{\log }_{{{2019}^{2019}}}}x}}.\)
Đáp án đúng là: C
Quảng cáo
Sử dụng các công thức: \(\dfrac{1}{{{{\log }_{{a^\alpha }}}x}} = {\log _x}{a^\alpha };\,\,{\log _x}{a^\alpha } = \alpha {\log _x}a.\) (Giả sử các biểu thức là có nghĩa).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












