Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^4} + \left( {m - 2} \right){x^2} - 2\left( {m + 2} \right)x + m + 5\) có đồ thị \(\left(

Câu hỏi số 376353:
Vận dụng

Cho hàm số \(y = {x^4} + \left( {m - 2} \right){x^2} - 2\left( {m + 2} \right)x + m + 5\) có đồ thị \(\left( {{C_m}} \right)\). Biết rằng mọi đường cong \(\left( {{C_m}} \right)\) đều tiếp xúc nhau tại 1 điểm. Viết phương trình tiếp tuyến chung của các đường cong \(\left( {{C_m}} \right)\) tại điểm đó?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:376353
Phương pháp giải

- Tìm điểm cố định mà với mọi giá trị của \(m\) thì đồ thị hàm số luôn đi qua.

- Viết phương trình tiếp tuyến tại điểm đó.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,y = {x^4} + \left( {m - 2} \right){x^2} - 2\left( {m + 2} \right)x + m + 5\\ \Leftrightarrow y = \left( {{x^4} - 2{x^2} - 4x + 5} \right) + m\left( {{x^2} - 2x + 1} \right)\end{array}\)

Để \(\left( {{C_m}} \right)\) luôn đi qua 1 điểm khi \(m\) thay đổi thì \({x^2} - 2x + 1 = 0 \Leftrightarrow x = 1\)

Với \(x = 1\) thì \(y = 0\), suy ra đồ thị hàm số \(\left( {{C_m}} \right)\) luôn đi qua điểm cố định \(A\left( {1;0} \right)\).

Ta có: \(y' = f'\left( x \right) = 4{x^3} + 2\left( {m - 2} \right)x - 2\left( {m + 2} \right)\).

\( \Rightarrow f'\left( 1 \right) = 4 + 2.\left( {m - 2} \right).1 - 2\left( {m + 2} \right) = 4 + 2m - 4 - 2m - 4 =  - 4\)

Suy ra phương trình tiếp tuyến chung của các đường cong \(\left( {{C_m}} \right)\) tại điểm \(A\left( {1;0} \right)\) là:

\(d:y = f'\left( 1 \right)\left( {x - 1} \right) + 0 =  - 4\left( {x - 1} \right) =  - 4x + 4.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com