Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \({a^3}\). Gọi \(M,\,\,N\) lần lượt là trung
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \({a^3}\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(A'B'\) và \(CC'\). Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BMN} \right)\) biết rằng \(BMN\) là tam giác đều cạnh \(2a\).
Đáp án đúng là: C
Quảng cáo
- Tính thể tích \({V_{AMNB}}\) qua thể tích của \(ABC.A'B'C'\)
- Khoảng cách từ \(A\) đến mp\(\left( {MNB} \right)\) tính bởi công thức: \(d\left( {A;\left( {MNB} \right)} \right) = \dfrac{{3{V_{A.MNB}}}}{{{S_{MNB}}}}\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













