Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(2a\). Gọi \(M\) là trung

Câu hỏi số 379502:
Thông hiểu

Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(2a\). Gọi \(M\) là trung điểm của \(SA\). Thể tích của khối chóp \(M.ABC\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:379502
Phương pháp giải

Công thức tính thể tích khối chóp có diện tích đáy \(S\) và chiều cao \(h\) là: \(V = \dfrac{1}{3}Sh.\)

Giải chi tiết

Ta có:\({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}.\)

\(AO = \dfrac{2}{3}AD = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}.\)

Áp dụng định lý Pitago cho \(\Delta SAO\) vuông tại \(O\) ta có:

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt {33} }}{3}.\)

Gọi \(I\) là hình chiếu vuông góc của \(M\) trên \(AO.\)

Khi đó ta có: \(MI = \dfrac{1}{2}SO\) (định lý Ta-let).

\(\begin{array}{l} \Rightarrow MI = \dfrac{{a\sqrt {33} }}{6}.\\ \Rightarrow {V_{MABC}} = \dfrac{1}{3}MI.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt {33} }}{6}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt {11} }}{{24}}.\end{array}\)

Chọn  D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com